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1. 

is  introduced which is defined using continwus real valued functions on the 

Introduction. In t h i s  pper, a notion of recurrence i n  dynamical systems 

phase space. Our basic idea is  as follows. Consider the  class of continuous 

real valued functions which are non-increasing along every orbit. Then we 

single out those orbits along which a l l  such functions are constant. This 

set, which includes the periodic, recurrent, and non-wandering points, i s  

called the generalized recurrent set. Its elementary properties are studied 

in  section 1, and it is shown (Theorem 2) that a single suitably chosen func- 

t i on  ref lects  th j3  "recursive" behavior of the dynamical s y s t e m .  BY means of 

prolongations, an in t r ins ic  characterization of the generalized recurrent set 

is  given i n  section 3 .  This depends on a purely topological result involving 

a closed quasi order  (Theorem 4) which i s  apparently new and may be of inde- 

pendent interest. In section 4, the connection of the generalized recurrent 

set with asymptotic and absolute s t ab i l i t y  of a compact imariarrt set i s  dis- 

cussed. 

current orbi ts  is shown t o  l i e  between paral le l izabi l i ty  and complete insta- 

b i l i t y  (Theorem 6). 

The condition that the dynamical sys tem be free of g e n e d i z e d  re- 
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I n  wlmt follows, X denotes a locally compact sepaxable metric space, 

with w t r i c  d, and E denotes the real line. A dynami tal system o r  

continuous - f l o w  (3' on x i s  a continuous map a : x x E +x satisfying 

Fmm now on, we write xt in place of a(x, t); axiom b) then reads 

(Xtl)tZ = x(t1 + t 2 ) -  

If x E X, the orbi t  of x is the se t  y(x) = (xt l t  E E). The positive - 
and negative - semi-orbits - of x are the sets p(x) = (&It B 0), and 

r-(x) = (xtl t  6 0 )  respectively. 

We briefly recall some of the notions of recurrence which have occurred 

i n  the study of dynamical systems, [ 3 ] J  [51. They a n  express the idea of 

a point returning t o  itself, i n  some sense, f o r  a rb i t r a r i l y  large time. The 

simplest is  a periodic point, that is, a point x such that XT = x, f o r  

some 7 > 0. A somewhat weaker notion is that  of a recurrent o r  Poisson stable 

Point. The point x is called (POSitiVely) recurrent if', f o r  every neighbor- 

hood U of x, and every T > 0, there is a t > T such that xt E U. 

Clearly x is recurrent if  and only if there exists a sequence (t,) of 

real numbers with t + SCO and xtn + x. S t i l l  weaker is a - non-wandering 

point -- that is, a point x such that f o r  every neighborhood U of x and 

every T > 0, U n Ut # $, f o r  some t > T. Obviously, the set  of non- 

n 

wandering points contains the  set of recurrent points, which i n  turn contains 

the  periodic points; w e l l  known examples show that these inclusions may be 

proper. 
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2. Generalized recurrence. kt denote the  class of continuous real 

valued functions f on X such that f(&) 5 f(x), f o r  a l l  x E X and 

a l l  t > 0. kt z be a non-wandering point. IX f E x  then f is 

constant on dz). To show this,  l e t  7 > 0, Since z is non-wandering, 

there are sequences zn 3 z and tn +a such that zntn + z. For n 

suf'ficiently large f(zntn)  6 f ( zn t ) ,  and by continuity of f, f ( z )  S f(z.r). 

Since f ~ - 2 / ;  f ( n )  S f (z ) ,  and therefore f (z7)  = f (z ) .  If t < 0, apply 

the  s8me argment t o  ZT and z = (zt)(-7). 

We define the set -4 t o  be the  s e t  of points x E X such that 

f(d) = f(4, for  a l l  f EX and a l l  t L 0. '$ will be called the 

peneralized recurrent - s e t  or sometimes the recurrent - set. 

sion shows that 62 includes the non-wandering points, and therefore the  

The above discus- 

(ordinary) recurrent points and the  periodic points. 

Theorem 1. @ is a closed, posit ively and - negatively invariant e. 
Proof. @ is obviously closed. kt x E @, and l e t  T > 0. kt f ET. 

If t > 0, then f(lcr)t) = f(x(7 i- t ) )  = f(x) = f(xr). Suppose xr jd @, 
f o r  some T < 0. "hen there i s  a g E and a to > 0 such that 

g((xr)to) < g(m). Then 

f(xto) = g ( ( x t o ) T )  = g((xr)to) <g(xT) = f(x). This contradicts x E @. 
kt f E % ~  be defined by f ( z )  = g(z'F) (z E X). 

Since is invariant, it i s  meaningful t o  speak of recurrent orbi ts .  

If f then so are a rc  t an  f and cf + d, where c and d are 

real numbers with c Z 0. This Emrk and Theorem 1 yield 

Lemma 1, kt a a& b be c- real numbers with a < b .  - Let 

= {f Er1a S f(x) 6 b, f o r  a l l  x E X). Then x E @ -- if and only - if 

- 
Va) b 

f(xt)  = f (x)  f o r  a l l  f E?/- and a l l  real t. 
a,b - - - -- 
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According t o  the  definition, a point x is i n  only i f  a l l  

f E qr are constant on i ts  orbit. The next theorem shows that there is a 

universal" f f o r  t h i s  purpose. I1 

Theorem 2. Them is an f & "Ir with -- the  following properties: --- 
(i) x E @ if a n d o m  if f - is constant - on dx). 

c- 

(ii) If x j d @  , and - t >0,  then f ( x t )  C f(x).  

Proof. kt C(X) denote the continuous real valued functions on X, 

provided with the topology of uniform convergence on compact sets. 

is  a separable E t r i c  space and so  i s  ?J. ='r 
be a countable dense set i n  ?A. Then x E @ 
fk(Xt) = fk(x) f o r  k = 1,2, ..., and a l l  t E E. Now, l e t  

and i n  k=lF 2 *. IY f*(xt) = f*(x), f o r  a n  t > 0, then fk(Xt) = fk(x) f o r  

k = 1,2, ..., and x E a. It,) i n  

Then C(X) 

Iet If,} (k = 1,2, ...) -1,l' 

if and only i f  

since Ifk(X)I s 1, it follows that f* is  continuous f* = c -k fk. O D 1  

I3 x g?, there is  a sequence 

E with tn 4 sa0 such tha t  P ( x )  > f*(xtl) > f*(xt2) > ... . Define 
00 

f(x) = J a(s)f*(xs)ds, when a is a positive s t r i c t l y  decreasing function 
O Q )  

such that J a(s)ds < 1. It i s  easi ly  verified tha t  f E %* and has the re- 
0 

quired properties. 

3. Another I characterization - of @. W e  wish t o  characterize the  set 

in t r ins ica l ly  -- that is, solely i n  terms of the dynamical system Y .  we 

do t h i s  by means of the theory of prolongations, developed by &a, [ 6 ] ,  [7], 

and Seibert and the author, [2]. W e  now review those concepts and results from 

this theory which we w i l l  need i n  t h i s  section. The reader i s  referred t o  the 

papers ci ted above f o r  details .  
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I;et Po be a m p  from X t o  2, the s e t  of a l l  subsets of X. W e  
n 

X define two new mps, &Po and d P o y  from X t o  2 by 

a P 0 ( x )  = r l  po(v) (where q( (x) denotes the  neighborhood f i l t e r  
u c q  (XI 

of x), and $p,(x) = u 
n=1.2. . . . $(XI. It i s  easy t o  see t h a t  y E odP0(x)  

i f  and only if  there are se&e&ces {x,} and cyn} i n  X w i t h  yn E Po(xn) 

such tha t  xn J X  and yn +y. Also y E JPo(x) i f  and only i f  there are 

points x = x, xl, ..., xn = y, with xi E PO(xiwl) (i = 1,2, ..., n). The 

maps ffand ao/ may be regarded as operators on the se t  of rnaps from X t o  

9; J7 is  a ftclosurefl operator and pJ is a " t rans i t iz ing~ '  operator. 

from x t o  2x inductively. kt 'a We define a family of maps 

P = BJPo. Now, l e t  a be an ordinal number, and suppose P has been 
1 n B 

defined fo r  p < a. We define Pa = a( U $Pp).  (By U QB we mean the 

map Q given by Q(x) = U Q,(x)). 

f i n i t i o n  reduces t o  P = &&fPaml. Clearly, if  p < a, then P,(x) ( PQ(x). 

If Q i s  suff ic ient ly  large (equal t o  the  f i r s t  uncountable o r d i m l  () it 

o 8 P  = d P Q  = Pa, and hence tha t  P - may be shown that 

h B a. We write P = U Pa, which is  equal t o  P 

B < a  
iY a is  a successor ordinal, t h i s  de- 

a 

f o r  a l l  x - l"Q a 

5' 
This precedure i s  applied t o  t w o  maps which are connected with the dyna- 

+ 
mica1 system y. W e  l e t  Do(x) = r (x), the positive semi-orbit of x, 

3 J D  = A  (since 8 D o  = Do already), As above, define D1 = 
0 

are - B L f D l ,  e * * ,  DQ = a J D p ) ,  a d  D* = u D a= m e  mps Da 
B <a:  D2 - 

the prolongations of Ura. The other map under consideration, denoted by 

is  defined by y E J1(x) if and only if there a re  sequences (xn}, and 

(y,} i n  X, and {t,} i n  E, w i t h  tn + so0 such that  xn +x, yn + Y  

Jly 
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and yn = xntn. men &fine J2 = dyJJl, ..., Ja = a( U $?Jp), and 

J = U Ja. 
* B < a  

It is  clear t h a t  y is i n  D1(x) if and only if them are sequences 

{xn), (yn] in X, and tn 0 with xn +x, yn = xntn, and yn +yo 

This teUs UB that it follows by an easy induction tha t  

J ~ ( x )  C D ~ ( x )  for a 2 1. 

J1(x) ( D1(x); 

We define 6f t o  be the set of x E X s m h  that x E Ja(x). kt a 
alternate chracter izat ion of @ is given i n  the next 

/> @ = u M ~ ,  
theorem. 

Theorem 2, 6? if and only if x E Ja(x), 

for so- a. 

The proof of Theorem 3 is plleceded by a sequence of lemmas. 

kmm% 2. Ja(x) - -  is  a positively a d  - negatively invariant - set. 

Proof. I& y E J1(x), and t E E, Then there are sequences (xn] i n  

X, {t,) i n  E, with xn +x, tn +- such that xntn +yo Then tn + t +=, 

and xn(tn + t) +yt, 

B <a. kt y E Ja(x) and t E E. I& xn +x,  yn +y, where 

yn E J (x,) (S, < a, kn a positive integer), By the induction hypothesis 

so yt E J1(x). Suppose tk l e m  is  true for all 

'n 

pn 
k 

Ynt  E J n(xn), ard Ynt + Yt E Ja(X)' sn 
ljellg~la 3. Ja(xt) = Ja(x)t = Ja(x), for all t E E. 

Proof, By I;em 2, Ja(x)t = Ja(x). It is  an immediate consequence of 

the definit ion that Jl(xt) = Jl(x)t. Suppose Jp(xt) = Jp(x)t, for al l  

p < a, and l e t  y E Ja(xt). kt yn E J (x,) (where pn < a, and k 2 1) n 
kn 
Bn 
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such that xn +xt and yn + y o  Now x,(-t) -$XI and 

yn(-t) E J (xn)(-t) = J (xn), by the induction assmption. Then 

yn(-t) -,y(-t), so y(-t) 6 Ja(x), and y E Ja(x)t. Hence 

Ja(x t )c  Jab)*. 

kn kn 
Pn Bn 

NOW Ja(x)t = J a ( d ( - t > > t  c Ja(xt)(-t)(t)  = Ja (d ) -  
* 

It fouows from k m p m a  3 that @ i s  a positively anii negatively in-  

wriarrt set. 

+ urn 4. D ~ ( x )  = JJX) u r (x). 

Proof. For a = 1 the le- i s  easy. Suppose it is  true f o r  all f3 < a. 
k 

y' E D (x'), B Observe that if then, by Lemm 3, 

y' E $(xt), wheE m 5 k. Row, if y E Da(x), l e t  xn + x ,  yn +Y, with 

Yn E Dpn 
many n, y E J ~ ( x ) .  yn E r (xn), f o r  infinitely mny n, then 

y' E r+(x'), of: 

'n 
Bn 

kn(xn) (S, <a, kn 2 1). If yn E J (xn> (fn 5 kn), f o r  in f in i te ly  
+ 

are equivalent: - 

Proof. ( i )  => ( i i )  i s  an  immediate consequence of &mms 3, and 

( i i )  => (Ui) is  clear. 

cient, by Ijemrna 4, t o  show r (x) c Ja(x). 

IcT e ~ ~ ( x )  = y (x> u JJX). EP xx E: r+(x), then x is periodic, and 

Suppose ( i i i )  holds. To show (iv), it is suffi- 

+ k t  7 < 0 such that  

+ 



x E J,(x). Otherwise XT E J,(x). kt t 2 9. Then (m)t E J,(x)t = Ja(x), 

a d  f(x> c J,(X). since x E D,(X) always, ( iv) => (i> is obvious, 

This is proved by 8 t r i v i a l  induction. 

mw we can pmve that ;? c $. I;et x E qd and l e t  f E K 
Sqppose t > 0. Then I: E J,(x) = Ja(xt), by Ienrma 3.  Since 

J,(xt) ( D,(xt), k m m a  6 implies f(x) S f(xt). Since always 

f(xt) s f(x), x E . f .  
To pmve that &( (p, w e  define a mlation -< on X by y 4 x  

* 
if and only if y E D (x). Then -< is  a closed quasi order on X. (By a 

quasi order we mean a reflexive, transitive, but not necessarily a n t i  s-tric 

relation.) Observe that xt( x, whenever x E X, and t > 0. If x 4  y 

but not y l  xy we write x 4% y, We first show: i f  x $@, and 

t > 0, then xt (< x. We know that 4 x. If x <  xt, then x E D (xt) ,  
* 

* 
and xt E 6? , by ];em 5. Then x ~&(- t )  = &* and this is a contradiction. 

Theorem 3 now i s  a consequence of the following purely topological 

theorem which has nothing t o  do with dynamic81 systems, 

Theorem 4. E X a, seprable  locally compact metric space and 

let -< - -  be a closed guasi-order on X. I;et x pJ y 2 X such that 

x -< y does not hold. Then there is  an  f - i n  C(X) -- such t h a t  (i) - if 

z < z', then f ( z )  S f (z ' ) ,  (ii) f (y )  < f(x). 

- 
--- ---c 

This theorem will be proved in section 5. 



4. Recurrence a s  stabilitx. In  [21, the prolongations Da were employed 

t o  study the s t a b i l i t y  properties of a compact positively invariant s e t  M. 

We say t h a t  M is stable of order a or a-stable i f  Da(M) = M. It is  

easy t o  see that s t ab i l i t y  of order one i s  just  Liapunov s tabi l i ty .  If M 

is  a-stable f o r  every ordinal number a, then M is said t o  be absolutely 

stable. - 
Absolute s t ab i l i t y  of M i s  equivalent t o  the existence of a continuous 

Liapunov function f o r  M (that is, a continuous non-negative function V 

defined in  a positively invariant neighborhood U of M such that V(x) = 0 

if and only if x E My and such that V ( x t )  6 V(x) f o r  x B U, and t > 0) 

(121, Theorem 3 ) .  

Now, while evidently absolute s t a b i l i t y  i s  a rather strong condition, 

simple examples show that  it i s  weaker than asymptotic s t a b i l i t y  (that is, 

Liapunov s t ab i l i t y  as w e l l  as the existence of a neighborhood U of M such 

that Xt +My as t +a, f o r  a l l  x E U). W e  shall show that the difference 

between absolute s tab i l i ty  and asymptotic s t a b i l i t y  i s  the existence of 

generalized recurrent orbits a rb i t r a r i l y  close t o  M. 

k t  M be an absolutely stable cnmpact positively invariant set ,  and 

l e t  V be a continuous Liapunov function f o r  M, defined i n  a neighborhood 

U of M. Then there exists E > 0 such that U = (xlV(x) S E) is a con- 
* 

pact subset of the in te r ior  of U. 

We m y  suppose E = 1. Let f denote a "universal" function i n  s', 
as constructed i n  Theorem 2, such that  f(x) > 0, fo r  a l l  x E X. Define 
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Then V' is a continuous Liapunov function f o r  M, which is  defined on 

a l l  of X, so  V' E 

V'(xt) = V'(X), and if x E X - 
Moreover, it is  clear that if x E e?, 

ktnm 7. k t  M be absolutely stable, and let U be a compact posi- - - -- 
t i ve lx  invariant neigmmfiood of M. kt M* = (M u @) n u. 
X E  u, x b + M  a2 t+=.  

en f o r  a33 - - A-7 
* 

* 
Proof. F i r s t  observe that M is positively invariant. let V' be 

* 
the Liapunov function constructed above, and let  x E U - M . let y E Q(x), 

the omega limit s e t  of x. Then there is  a sequence Itn) in E with 

t + a~ such that  xtn -+ y. Now l i m  V'(xb) = exists, and obviously 
t + =  n 

V'(y) = A. Moreover, if T E E, tn + T +m, so V'(x(t, + T)) -+V'(y?) = A. 

' P h e E f O E  Y E  u n &  M*. 

The mthod of proof of this lemma is due t o  Iasalle, (141, TheoEm 1.) 

Theorem 5. kt M be - absolutely stable. Then M asymptoticallx - 
stable if and only if  there is a neighborhood U of M such t h a t  -- ---- - -- 
(u - M) ne= cp. 

Proof. E M is asymptotically stable, there exis ts  a neighborhood W 

of M and a continuom Liapunov f'umtion V f o r  M such that V(Xt) < V(x), 

for all x e W - M and all t > 0 (@I, Theorem 5) .  If w e  construct V' 

snd U as abave, it is clear that  there are no recurrent orbits i n  U - M. 
Conversely, l e t  U be a neighborhood of M such that (U - M) n@= $. 

* * 

Then M* = (M U@ ) fl U = My and, since M i s  Liapunov stable Iermna 7 

implies that M is asymptotically stable. 
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The absence of generalized recurrent orb i t s  i n  X may be regarded as 

an in s t ab i l i t y  property of 7.  AS Theorem 2 shows, @= (0 is  equiva- 

l en t  t o  the existence of a continuous real valued function which is  s t r i c t l y  

decreasing along every orbit .  As we S h a l l  see, t h i s  property actual ly  l ies 

between two known ins t ab i l i t y  c r i t e r i a .  

The dynamical system i s  said t o  be paral le l izable  if there exists 

a set S( X which intersects  every orb i t  of $, and a homeomorphism 

h of X onto S x E such that h(xt) = (x,t), whenever x E S. The set 

S i s  called a @ob1 section f o r  v. 
PJ 

prove t h a t  j is  parallelizable if and only if it is  dispersive -- that is, 

if x, y E X there a= neighborhoods U’ and U2 of x and y respectively, 

In  [l], DugundJi and Antosiexicz 

and a constant T > 0 such that Ult fl U2 = a, f o r  1% I > T. Now, t h i s  i s  

t he  same thing as saying that 

a t r i v i a l  induction that 

J1(x) = a, f o r  all x E X, and it follows by 

Ja(x) = a, f o r  a l l  x E X. Then a - f o r t i o r i  q= Q. 

9 i s  said t o  be completely unstable if  a l l  points are wandering. 
4 

That is  x 4 J1(x), f o r  a l l  x E X, and ql = a. Therefore, i f  tic= a, 

then 9’ is  cer ta inly completely unstable. 

Theorem 6. (i) If g’ parallelizable, @= 
(ii) 

(iii) e IT g i s  - completely unstable, and -- if D1(x) = y (x), f o r  a l l  x e X, 

then - is  parallelizable.  

Lf @ = @, Fg completely unstable. 

+ 

- 
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Proof. ( i) and (ii) have already 

Let x E show that 7. is  dispersive. 

y E z<x,, 
x E J1(x)(-7) = J1(x), 

so y = XT, fo r  some 7 > 0. Theref0l.e XF E J1(x), and 

which contradicts complete instabil i ty.  

been proved. TO prove (iii), we 

X and suppose y E J1(x). Then 

The converses of (i) and (ii) do not hold i n  general. Consider the 

aynamical system y d e f i n e d  by the s y s t e m  

e = s i n  y s 
2 ( g = cos y. 

The orbits of r a r e  the curves 

y = (2k + 1) 5 (k = 0, 2 1, ... ). 

kt yo be the dynamical system obtained by E s t r i c t i n g  3 t o  the 

x = c + sec y, a d  the lines 

4-J 

s t r i p  - E S y 5 E I n  t h i s  case, = 0, since tk function 2 2' 

f (x, y) = - y(arctan x + T )  

is easy t o  see tha t  3'0 is not parsllelizable; indeed, it has an improper 

is s t r i c t l y  decreasing along every orbit. It 

saddle point ( @ I ,  p. 4 u ) .  

To see that the converse of (ii) is false, cmsider the dynamical system 

obtained f r o m  T ' b y  identifying (x, y) and (x, y + a). rl has the 
P 

same local properties as cf,, and is therefore completely unstable. For 

An interesting problem is t o  consider the consequences of the assumption 
+ 

D1(x) = r (x), 
assumedthat there are no s i n g a r  or periodic orbits, I conjecture that 

f o r  a l l  x E X. Lf, i n  addition t o  th i s  hypothesis, it is 

is  completely unstable (and themfore parallelizable). 
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K j' where each K j i s  U 5. Z!k proof of Theorem 4. let X = 
j=1,2, ... 

i s  a neighborhood of K (j = 1,2, ... ). compact, and K j+l j 

Let  A denote the dyadic ratiozlal numbers A with 0 S h.< 1. we shall 

X 

If Z E  % and 2 ' 4 2 ,  then 2' E %, and. 4) 

(LE A, j = 1,2, ... ). 
Once the sets 5 with these properties are 

f ( z )  = infh E Alz E Uk], and f ( z )  = 1 if z 

defined, we may define 

s i n  no 5. It is easy t 

ver i fy  tha t  f is  continuous and has the necessary properties. 

If z E: X let L(z) = { z '  E XI.'-( z )  and if A <  X, l e t  

L(A) = u ~ ( z ) .  Since 4 is  t ransi t ive,  L(L(A)) = L(A). 
Z E A  

By renumbering if  necessary, we may suppose that x and y am In the 

in te r ior  of %. 
and x respectively such that L(Wo) n N = Q. Such neighborhoods exist, 

kt Wo and N be dis jo in t  compact neighborhoods of y 

since 4 i s  closed. kt u = L ( w ~ )  n %. Then u 0 9 1  is  compact, 

L(uo,l) n K;_ = uo,p 

Then L(U 3,1 ) n 5 = u*,~, 

0, 1 

0 9 1  
and U n N = $. Now, l e t  WA 2 3 1  be a compact neigh- 

i n  ~1 swh that L(W& 1) n N = (d. L e t  ul 291 

-z,1 

= L(W+,&) n 5. borhood of U 
0 3 1  21 

and Ul n N = $. A l s o  U 0 9 1  c in te r ior  UA 2, 

... . To define, Continuing i n  this mnner, we construct 

f o r  example, U 

Then U n N* = $, and we may l e t  N* play the role of N above. That 

U 3/4,1' u7/i3, 1' 
proceed as follows. Let F = closure (5 - vl_ 2 9  1>. 1 / 4 d  

0 , l  

of u such that is, we f ind a compact neighborhood W v 4 ,  1 

1/49 1/4,1 

0 9 1  

C in te r ior  u 
) n N* = (d.  his is possible swce L ( u ~ , ~ )  n K.,. = u ~ , ~ .  Then, l e t  L('1/4, 1 

U 
*,1* 

= L ( W ~ / ~ , ~ )  n 5. Clearly, u 
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By this process, we obtain compact sets a,l ( A E  A) in pI such 

that Y E  inter ior  xl, ~$41 .  a&, if A < A * ,  then xlC i n t e r i o r %  

("interior" is Ehtive t o  5). 
' 9 1  J 

analogously using I$ in place of IC,-. W e  s t a r t  
%,2 

Next we define 

with the ~ a m e  uo and N, 8nd define u = L ( W ~ )  n 5 = L(U ) n yr. 
Now, kt WL be a canpact neighborhood of U i n  I$ smh  that 

0 9 2  0, l  

2, 032 

and L(W ) n IC,- = yZ1. That this is 
392 % =  3,lJ 392 n B = q, 

possible again follow f ran  the  "closed" property of & . Proceed as above, 

i n  this umner, and let 
%a 

For each positive ixrteger k, define 

Properties 1) and 2) follow from the corresponding pro- %, k' x= u 

Perties Of the 5,k'  

If m = -(3, 11, z E 4,m, 

k=l,2, . . . 
4, 

4- 

and4)  is true since IJ, n Kj = kt z E 

z' E IC1 f o r  some j and I. %, j, and suppose z t 4 z .  Then z E 

Z' E ym ani Z* E: L ( x , ~ )  n ~ $ 1 =  u 
A,m 

Hence 3) is true. 
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